3,406 research outputs found

    Point-contact Andreev reflection spectroscopy of heavy-fermion-metal/superconductor junctions

    Full text link
    Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn5_5 using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance [1]. To explore their physical origins, we have extended our measurements to point-contact junctions between single crystalline heavy-fermion metals and superconducting Nb tips. Differential conductance spectra are taken on junctions with three heavy-fermion metals, CeCoIn5_5, CeRhIn5_5, and YbAl3_3, each with different electron mass. In contrast with Au/CeCoIn5_5 junctions, Andreev signal is not reduced and no dependence on effective mass is observed. A possible explanation based on a two-fluid picture for heavy fermions is proposed. [1] W. K. Park et al., Phys. Rev. B 72 052509 (2005); W. K. Park et al., Proc. SPIE-Int. Soc. Opt. Eng. 5932 59321Q (2005); W. K. Park et al., Physica C (in press) (cond-mat/0606535).Comment: 2 pages, 2 figures, submitted to the SCES conference, Houston, Texas, USA, May 13-18, 200

    Phase transition classes in triplet and quadruplet reaction diffusion models

    Full text link
    Phase transitions of reaction-diffusion systems with site occupation restriction and with particle creation that requires n=3,4 parents, whereas explicit diffusion of single particles (A) is present are investigated in low dimensions by mean-field approximation and simulations. The mean-field approximation of general nA -> (n+k)A, mA -> (m-l)A type of lattice models is solved and novel kind of critical behavior is pointed out. In d=2 dimensions the 3A -> 4A, 3A -> 2A model exhibits a continuous mean-field type of phase transition, that implies d_c<2 upper critical dimension. For this model in d=1 extensive simulations support a mean-field type of phase transition with logarithmic corrections unlike the Park et al.'s recent study (Phys. Rev E {\bf 66}, 025101 (2002)). On the other hand the 4A -> 5A, 4A -> 3A quadruplet model exhibits a mean-field type of phase transition with logarithmic corrections in d=2, while quadruplet models in 1d show robust, non-trivial transitions suggesting d_c=2. Furthermore I show that a parity conserving model 3A -> 5A, 2A->0 in d=1 has a continuous phase transition with novel kind of exponents. These results are in contradiction with the recently suggested implications of a phenomenological, multiplicative noise Langevin equation approach and with the simulations on suppressed bosonic systems by Kockelkoren and Chat\'e (cond-mat/0208497).Comment: 8 pages, 10 figures included, Updated with new data, figures, table, to be published in PR

    Efficient magneto-optical trapping of Yb atoms with a violet laser diode

    Full text link
    We report the first efficient trapping of rare-earth Yb atoms with a high-power violet laser diode (LD). An injection-locked violet LD with a 25 mW frequency-stabilized output was used for the magneto-optical trapping (MOT) of fermionic as well as bosonic Yb isotopes. A typical number of 4×1064\times 10^6 atoms for 174^{174}Yb with a trap density of ∼1×108/\sim 1\times10^8/cm3^3 was obtained. A 10 mW violet external-cavity LD (ECLD) was used for the one-dimensional (1D) slowing of an effusive Yb atomic beam without a Zeeman slower resulting in a 35-fold increase in the number of trapped atoms. The overall characteristics of our compact violet MOT, e.g., the loss time of 1 s, the loading time of 400 ms, and the cloud temperature of 0.7 mK, are comparable to those in previously reported violet Yb MOTs, yet with a greatly reduced cost and complexity of the experiment.Comment: 5 pages, 3 figures, 1 table, Phys. Rev. A (to be published

    Little Higgs Models and Precision Electroweak Data

    Get PDF
    We study the low energy limit of Little Higgs models. The method consists in eliminating the heavy fields using their classical equations of motion in the infinite mass limit. After the elimination of the heavy degrees of freedom we can directly read off deviations from the precision electroweak data. We also examine the effects on the low energy precision experiments.Comment: Misprint in eps3 for the custodial model corrected and additional discussion of the triplet higg

    Dynamics-dependent criticality in models with q absorbing states

    Full text link
    We study a one-dimensional, nonequilibrium Potts-like model which has qq symmetric absorbing states. For q=2q=2, as expected, the model belongs to the parity conserving universality class. For q=3q=3 the critical behaviour depends on the dynamics of the model. Under a certain dynamics it remains generically in the active phase, which is also the feature of some other models with three absorbing states. However, a modified dynamics induces a parity conserving phase transition. Relations with branching-annihilating random walk models are discussed in order to explain such a behaviour.Comment: 5 pages, 5 eps figures included, Phys.Rev.E (accepted

    Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 2. Catalytic hydrodeoxygenation reactions of lignin model compounds in organic and aqueous systems

    Get PDF
    Nickel metal supported on HZSM-5 (zeolite) is a promising catalyst for lignin depolymerization. In this work, the ability of catalysts prepared via deposition-precipitation (DP) to perform hydrodeoxygenation (HDO) on two lignin model compounds in organic and aqueous solvents was evaluated; guaiacol in dodecane and 2-phenoxy-1-phenylethanol (PPE) in aqueous solutions. All Ni/HZSM-5 catalysts were capable of guaiacol HDO into cyclohexane at 523 K. The role of the HZSM-5 acid sites was confirmed by comparison with Ni/SiO2 (inert support) which exhibited incomplete deoxygenation of guaiacol due to the inability to perform the cyclohexanol dehydration step. The catalyst prepared with 15 wt% Ni, a DP time of 16 h, and a calcination temperature of 673 K (Ni(15)/HZSM-5 DP16_Cal673), performed the guaiacol conversion with the greatest selectivity towards HDO products, with an intrinsic rate ratio (HDO rate to conversion rate) of 0.31, and 90% selectivity to cyclohexane. Catalytic activity and selectivity of Ni/HZSM-5 (15 wt%) in aqueous environments (water and 0.1 M NaOH solution) was confirmed using PPE reactions at 523 K. After 30 min reaction time in water, Ni/HZSM-5 exhibited ~100% conversion of PPE, and good yield of the desired products; ethylbenzene and phenol (~35% and 23% of initial carbon, respectively). Ni/HZSM-5 in NaOH solution resulted in significantly higher ring saturation compared to the Ni/HZSM-5 in water or the NaOH solution control

    Hyperons analogous to the \Lambda(1405)

    Full text link
    The low mass of the Λ(1405)\Lambda(1405) hyperon with jP=1/2−j^P = 1/2^-, which is higher than the ground state Λ(1116)\Lambda(1116) mass by 290 MeV, is difficult to understand in quark models. We analyze the hyperon spectrum in the bound state approach of the Skyrme model that successfully describes both the Λ(1116)\Lambda(1116) and the Λ(1405)\Lambda(1405). This model predicts that several hyperon resonances of the same spin but with opposite parity form parity doublets that have a mass difference of around 300 MeV, which is indeed realized in the observed hyperon spectrum. Furthermore, the existence of the Ξ(1620)\Xi(1620) and the Ξ(1690)\Xi(1690) of jP=1/2−j^P=1/2^- is predicted by this model. Comments on the Ω\Omega baryons and heavy quark baryons are made as well.Comment: 4 pages, talk presented at the Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 (APFB2011), Aug. 22-26, 2011, Seoul, Kore

    Chiral radiative corrections and D_s(2317)/D(2308) mass puzzle

    Full text link
    We show that one loop chiral corrections for heavy-light mesons in potential model can explain the small mass of D_s(2317) as well as the small mass gap between D_s(2317) and D(2308).Comment: To appear in EPJC. A figure and references addede

    Multifractal current distribution in random diode networks

    Full text link
    Recently it has been shown analytically that electric currents in a random diode network are distributed in a multifractal manner [O. Stenull and H. K. Janssen, Europhys. Lett. 55, 691 (2001)]. In the present work we investigate the multifractal properties of a random diode network at the critical point by numerical simulations. We analyze the currents running on a directed percolation cluster and confirm the field-theoretic predictions for the scaling behavior of moments of the current distribution. It is pointed out that a random diode network is a particularly good candidate for a possible experimental realization of directed percolation.Comment: RevTeX, 4 pages, 5 eps figure
    • …
    corecore